Heat transfer enhancement in the oscillating turbulent flow of a pulse combustor tail pipe
نویسندگان
چکیده
منابع مشابه
Pulse Combustor Tail-Pipe Heat-Transfer Dependence on Frequency, Amplitude, and Mean Flow Rate
A commonly cited advantage of pulse combustors is a high rate of heat transfer in the tail pipe. Past research on these rates of heat transfer is inconclusive regarding the amount of heat transfer enhancement and how various flow parameters affect this enhancement. This article reports an experimental heat transfer study in the tail pipe of a pulse combustor. The pulsation frequency, pulsation ...
متن کاملFluid Flow and Heat Transfer Structures of Oscillating Pipe Flows
The RANS method with Saffman’s turbulence model was employed to solve the time-dependent turbulent Navier-Stokes and energy equations for oscillating pipe flows. The method of partial sums of the Fourier series is used to analyze the harmonic velocity and temperature results. The complete structures of the oscillating pipe flows and the averaged Nusselt numbers on the tube wall are provided by ...
متن کاملFactor Effect Estimation in the Convective Heat Transfer Coefficient Enhancement of Al2O3/EG Nanofluid in a Double-pipe Heat Exchanger
The forced convective heat transfer (CHT) coefficient of a particular nanofluid, Al2O3 nanoparticles-ethylene glycol (EG) mixture, was investigated experimentally in a double-pipe heat exchanger. The nanofluid Nusselt number for different nanoparticles’ concentrations as well as various operating temperatures was measured to be increased up to 23.7% using 1.0% wt of nanoparticles. The significa...
متن کاملLaminar Flow Heat Transfer of a Pseudoplastic Fluid through a Double Pipe Heat Exchanger
An experimental study was carried out to obtain the mean convective heat transfer coefficient of aqueous carboximethyl cellulose (CMC) solutions in double-pipe heat <span style="font-size: 10pt; color:...
متن کاملNumerical Investigation of Heat Transfer Enhancement in a Rectangular Heated Pipe for Turbulent Nanofluid
Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Heat and Mass Transfer
سال: 1992
ISSN: 0017-9310
DOI: 10.1016/0017-9310(92)90074-3